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The momentum distribution of the proton in liquid and solid hydrogen has been 

measured by neutron Compton scattering (NCS), at energy transfers between 3 

and 50 eV. The data display features due to interference between the proton and 

neutron wavefunctions and are accurately described by a simple quantum 

mechanical model, incorporating previous spectrocopic data. The excellent 

agreement between calculation and data in this simple system demonstrates that 

the NCS technique can provide accurate information about the behaviour of the 

proton in condensed matter. There are many applications of NCS to more 

complex physical systems of fundamental interest in physics, chemistry and 

biology. 
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BY NEUTRON COMPTON SCATTERING 

The possibility of measuring nuclear momentum distributions in condensed 

matter sytems by neutron scattering was first suggested by Hohenberg and 

Platzmann [l] nearly 30 years ago. The method is analagous to the 

measurement of electron momentum distributions by Compton scattering [2] 

and measurement of nucleon momenta by Deep Inelastic Scattering [3] and is 

known as Neutron Compton Scattering (NCS) or Deep Inelastic Neutron 

Scattering (DINS). The theoretical basis of all three techniques is the impulse 
approximation (IA), which is exact when the momentum transfer g and energy 

transfer o are infinite [4,5,6]. When the IA is valid, the scattering cross section 

is proportional to the distribution of nuclear momentum components along the 

direction of g and can be used to determine n(P), the distibution of nuclei (and 

hence atoms) in momentum space. 

NCS measurements on protons have a particularly simple interpretation, as the 

interaction of protons with other atoms can usually be accurately accounted for 

[7,8] in terms of a single particle potential and hence by a proton wavefunction. 
From elementary quantum mechanics, n(p) is related to the Fourier transform of 

the proton wavefunction Y(3) via, 

(1) 

and an NCS measurement of n(3) can be used to determine the wavefunction in 

an analagous way to the determination of real space structure from a diffraction 

pattern. In principle such measurements can provide very detailed information 

about the behaviour of the proton in a variety of systems of fundamental 

interest in physics, chemistry and biology. 

NCS measurements on protons have only become possible since the 

construction of intense accelerator based neutron sources , which have allowed 

accurate inelastic neutron scattering measurements with energy transfers in the 

eV region [9]. For NCS measurements on the proton in molecular hydrogen, 

energy transfers much greater than the vibrational frequency of the molecule 

(516 meV [lo]), are required before the IA can be used to reliably determine 

n(s). At lower energy transfers the IA is no longer valid and n(p) is not related 
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in a simple way to the observed scattering intensities. In sytems with weaker 

binding, lower energy transfers can be used and many early NCS measurements 

were performed on helium at relatively low energy and momentum transfers, (o 

< 300 meV and q < 15 A-l). These studies were motivated primarily by the 

possibility of directly observing the Bose condensate fraction in superfluid 4He 

[11,12,13,14,15]. More recently NCS measurements with 15<q<40 A-1 and 

incident energies up to 2 eV have been made on condensed phases of helium16 

and neon17 . There have been a few pioneering studies on various systems at eV 

energy transfers [l&19,20]. Measurements on molecular hydrogen have also 

been made, with o insufficient to excite vibrational transitions [21,22]. This 

allows a measurement of the centre of mass motion of H2 molecules rather than 

the momentum distribution of individual protons. The measurements described 

here were made with 3<0<50 eV and 3Ocq<13OA-1. At such high values of 

q and o, accurate NCS measurements can be made even in strongly bound 

systems such as hydrogen. 

The formal statement of the IA in neutron scattering is [23] 

(2) 

where S(?j,o) is the dynamic structure factor, n(9) is the nuclear momentum 

distribution, 3 is the atomic momentum and M is the nuclear mass. The 6 

function expresses the conservation of kinetic energy, which applies to the 

collision between the nucleus and the neutron when the IA is satisfied. When the 

scattering sample is isotropic it can be shown that [5], 

m,N = fJ(Y) 
where 

(3) 

(4) 

and 



J(y)& is the probability that an atom has momentum component along a with 

magnitude between y and y +dy and is known as the Compton profile. Equations 

3 to 5 express the ’ y scaling’ property of the neutron cross section at sufficiently 

high q [24]. 

The measurements were performed on the electron volt spectrometer eVS at the 

ISIS neutron source [25]. A filter difference technique [26], with a gold foil 

anlayser, was used to fix the energy of the scattered neutron at 4.922 eV. Time 

of flight techniques [27] were used to determine the energy of the scattered 
neutron and hence S(q,o). The sample of para hydrogen was measured at 

temperatures of 2OK and 4K (the liquid and solid phases respectively) and was 

a 5% scatterer, contained in a planar aluminium can with a sample thickness of 

-1mm and with the sample plane perpendicular to the incident beam. 
Measurement times were 24 hours at each temperature. Due to the y scaling 

property mentioned above, all scans through q ,a space map on to the same 

function J(y). Thus providing the IA is well satisfied the measurements of J(y) 

at different angles differ only in the width of the instrument resolution function 

and can be averaged to improve statistical accuracy. As the differences observed 

between the 4.9K and 2OK data were at the limits of measurement accuracy, the 

data sets at the two temperatures were also .averaged to further reduce the 

statistical error. 

Figure la shows the average of Compton profiles measured in 10 3He gas 

detectors at angles between 35 and 45’, Figure lb that for 10 detectors between 

45 and 55” and lc for 20 detectors at angles between 55 and 75”. The instrument 

resolution function [25,28] is also shown for each of these data sets, together 

with the energy and momentum transfers corresponding to the detector at the 

centre of each bank. There is a small multiple scattering component in the data 
which is visible at large positive y values , particularly in the data sets at the two 

lower angles and this has been fitted by a second order polynomial. The data 
shows small systematic shifts of the peak of the distribution towards negative y , 

due to inaccuracies in the IA which are present at the finite q of the 

measurement. It has been shown by Sears [5] that symmetrisation of data about 
y = 0 removes most of these inaccuracies and this procedure has been followed 

to produce the data shown in Figure 2. The data from all detectors between 
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35” and 55” has been averaged and the multiple scattering background 

subtracted before symmetrisation. 

The results are well described by a simple quantum mechanical model. It is 

assumed that the hydrogen molecule is bound by a harmonic potential and that 

its centre of mass translational motion is independent of its vibration along the 
bond axis. J(y) is then the convolution of the momentum distributions for the 

vibrational and translational motions considered separately. 

J(Y) = j ~7 (Y’>J, ti’ - y)dy’ V-4 

The translational momentum distribution JT (y) is approximated by a Gaussian 

function. 

(7) 

From previous measurements [21] the kinetic energy of the centre of mass 

motion is 63 f6K in the liquid at 17K and 76+9 in the solid at 10K. Taking the 

average of these values as 70K, the translational kinetic energy of each atom is 

35K =30r2/(2M) and a470 A-l. 

The momentum distribution J, (y) associated with vibration along the bond can 

be determined from the wave function of the proton in the molecule. Since the 

binding is assumed harmonic, each atom will have a Gaussian probability 

distribution along the bond axis, centred at its mean position at distance R from 

the centre of mass, where 2R is the bond length. In parahydrogen below 20K 

only the J=O state of rotation is thermally occupied and the molecular 

wavefunction has no directional dependence. Thus the wave function of each 

proton is a spherical shell. 

‘l’(r) = 27&r’ + 2R2) ]” exp[ _o’] (8) 

where the mean square displacement of the atom from its mean position along 

the bond is cr2 / 2 (=Jr21y(?)12dr) . Neglecting terms of order e@c[R’ / (20*)] 

equations 1 and 8 give, 
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n(p) = 
20 

IC”~P~ (02 + 2R2) 
(po’ cospR+RsinpR)2exp(-02p2) (9) 

The bond length is accurately known from spectroscopic measurements 

(RAWtO A [lo]) and the value of CT can be determined from the frequency of 

molecular vibration as (T = 0.1269 A . The solid line in Figures 1 a- lc is fit to a 
convolution of the model J(y) with the resolution function. The only fitting 

parameters are a scale factor, the position of the distribution and the polynomial 

coefficients, which account for the multiple scattering background. The values 

of o ,R and or were fixed at the values given above. It can be seen that the 

model gives excellent agreement with the measurements at all angles. The solid 
line in Figure 2a is the calculated J(y) after convolution with the resolution 

function- there are no free parameters. The difference between the predictions of 

the model and the symmetrised data is shown in figure 2b as the points 00. A fit 

to the data shown in figure 2a, with R and 0; as free parameters gave R=O.356& 

0.003 A and 0=5.70&0.03 A-1, in good agreement with the values of 0.37 and 

5.577 obtained from spectroscopy, although outside the quoted statistical error, 

due to small systematic errors. 

The importance of including the oscillatory terms in equation 9 is demonstrated 

by the predictions of a classical model, which neglects the wave nature of the 

proton. It is assumed that the molecule is a classical linear vibrator and that each 

proton has a Gaussian momentum distribution along the bond. Averaging over 

all possible directions of the bond axis in space, to take account of the isotropy 

of the sample gives 

n(p) 
1 

=ynv(p> 
23P 

(10) 

where n, (p) is the distribution of momentum components along the bond. A 

calculation using equations 5,6,7 and 10 gives the results shown as the dashed 

line in Figure 2a. The difference between the classical and the quantum models 

is shown as the solid line in figure 2b and displays oscillations with a first 

maximum at y = 7~/(2R). This is well reproduced by the data points xx, which are 

the difference between the data and the classical prediction. The oscillations in 
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the data are the first observation of interference between the proton and neutron 

wavefunctions. 

The future applications of NCS measurements from protons and deuterons are 

very wide. An example is the hydrogen bond where NCS can determine 

whether the observed bi-modal distribution of the proton in hydrogen bonds is 

the result of statistical or quantum disorder [29]. The information obtained from 

NCS is qualitatively different to that given by neutron diffraction measurements. 

The latter determine an infinite time average of the spatial distribution of the 

proton wheras the former measures the proton wavefunction on a very short 

timescale. Thus NCS can distinguish between quantum tunneling and thermally 

induced hopping of the proton between different sites. One application is to the 

study of the mechanism of protonic diffusion in metals, semiconductors and 

ionic conductors. Another is to the determination of the proton wavefunction in 

molecules which undergo rotational tunnelling [30]. 

The very close agreement between data and calculation in this simplest of 

protonic condensed matter systems, demonstrates that NCS measurements have 

now reached a high level of accuracy. It shows that wavefunctions of protons 

can be determined even in isotropic samples, such as liquids, powders, 

amorphous materials and polymers. Much more detailed information about the 

proton wavefunction can be obtained from single crystal samples, where NCS 

allows a model independent reconstruction of both the proton wavefunction and 

the potential well of the proton in three dimensions [29]. Orders of magnitude 

increases in the accuracy of NCS measurements will soon be produced by 

improvements in countrate and resolution and it seems certain that future 

measurements will provide precise and unique information about the short time 

dynamics of protons, in many condensed matter systems of fundamental 

physical interest. 
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Fieure 
The data points are the average of the measured neutron Compton profiles 

obtained from detectors in three different angular ranges. (a) 35O-45’, 

(b) 45’~55O, (c) 55”-75’. The solid line is the fit described in the text. The 

resolution function is shown for each data set as a dashed line. 

Fieure 
In (a) the points oo are the sum of data from 20 detectors at scattering angles 

between 35’ and 55” after subtraction of multiple scattering and 

symmetrisation. The solid line is the calculation using equation 9 and the 

dashed line that using equation 10, both after convolution with the instrument 

resolution function. Figure 2b shows the difference between the data and the 

two models. oo equation 9, xx equation 10. The solid line is the difference 

between the quantum and classical models. 
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Figure 2a. 

5 10 15 20 

Momenthn Y (a-‘) 

Figure 2b 

5 10 15 

MOMENTUM Y (A-‘) 


